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Summary

Although the principle of injection locking has been applied
to single- and multiple-device oscillators at microwave
through millimeter wavelengths, the technique has not
found many uses in hybrid or monolithic microwave inte-
grated circuits. We present here a novel circuit topology
which leads to the inter—injection-locking of a set of in-
terconnected oscillators. Since each oscillator is coupled
only to its two nearest neighbors, the scheme is very well
adapted to integrated planar construction. Furthermore,
phase control of only one injection power source can con-
trol the phases of all oscillators in the system in a manner
suitable for driving a phased antenna array. A summary of
the theory is followed by a description of results from an
experimental VHF three—oscillator system. We conclude
with a discussion of some proposed applications of inter—
injection—locked systems.

Single Injection—Locked Oscillator

The most complete treatment of microwave oscilla-
tors injection-locked to an external source is contained
in a series of works by Kurokawa [1,2,3]. He based his
work on what we shall term a canonical oscillator cir-
cuit in which the active device is simplified to a nonlin-
ear impedance whose real part is allowed to be negative.
Unlike Kurokawa’s single—cavity multiple-device analysis,
however, we begin by assuming that each device is embed-
ded in its own oscillator circuit, forming a complete unit
which may be coupled to other units in a controlled fash-
ion. Planar circuit technology makes this assumption viable
under most circumstances. Except for this difference, our
analysis of a single-device oscillator is merely a dual form
of Kurokawa’s treatment.

The canonical oscillator (Fig. 1) contains an active
nonlinear element Yp(A) = —Gp(4) + jBp(A) whose real
and imaginary components depend in a nonlinear way upon
the peak amplitude A of the presumably sinusoidal voltage
across its terminals. In parallel with the active element
Yp(A) is an equivalent tank circuit having inductance L
and capacitance C, as well as an equivalent load conduc-
tance Gr.

The injection signal i(t) in Fig. 11is a current which, by
Kirchoff’s current law, is the sum of the currents through
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the various components:
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Fig. 1. Canonical oscillator circuit.
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We now make an important assumption about the nature
of the voltage v. Let

c? G+ %/vdt+ypv= i(0) (1)

v = A(t) cos[wit + ¢(t})] (2)

where the peak voltage amplitude A(t) and the instanta-

neous phase ¢(t) are both slowly varying functions of time.

The phase is measured with respect to an arbitrary refer-

ence frequency w;, and the modifier “slowly” refers to the

rate of change with respect to one period of the reference

frequency. The assumption of slowly varying amplitude and '
phase allows us to neglect higher-order terms arising when

equation (2) is inserted into equation (1). Integration by

parts yields the following expression:

C{~Alui + P sin(unt + ¢) + 94 coslwit + )}
+ (G — Gp)[Acos(wit + ¢)] — BpAsin(wit + )

A do, . 3
+ %{(‘% —a d_(f) sin(w;t + ¢) )

A R
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At this point we make an assumption about the injected
current £(t). We assume that it consists of a cosinusoidal
in—phase component of magnitude I.(¢) in phase with the
oscillator, plus a quadrature sinusoidal component of mag-
nitude I, (¢):
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i(t) = I.(t) cos(wit + ¢) + L(t)sin(wit + ¢)  (4)

Substitution of (4) into {3) allows us to multiply both sides
of the expression by sin{w;t + ¢} and integrate over one
cycle. Orthogonality eliminates the cosine terms and leaves:

dé 1
—_(C+Z;2_I:) -+ BD +w,~C’ -
3

dt wil
When (3) is multiplied by cos(w;t + ¢) and integrated, we
have

dA | 1
—(C + ;E;Z) +(GL~-Gp)A=1,

i (6)

For radian injection frequencies w; near the free-running
oscillator frequency w, = 1/vLC, we define a frequency
deviation Aw = w; — w, so that

1

Y

1
C — — = C 8
W oL 2Aw (8)

We thus arrive at differential equations in time for the am-
plitude and phase of the oscillator voltage:

a'qS BD Is

L= - - O

dt YT32¢  2cA (©)

dA A I,

il ol — —= 0

R TAC LA T (10)
In the absence of injection current (I, = I, = 0),

equation (10) shows that the steady-state amplitude A,
is reached when G'p(A) — Gr =0, making d4/dt = 0. It is
also clear that the in-phase component I, of the injection
current has a first—order effect on amplitude, while instan-
taneous frequency (= d¢/dt) is primarily influenced by the
quadrature component I,.

Coupled Oscillators

The derivations leading to equations (5) and (6) above
allow us to embed one or more canonical oscillators in a
linear circuit of our choosing. Given an initial amplitude
A(t) and phase ¢(t) for each oscillator, linear circuit theory
leads to a solution for the injection current ¢(¢) which can
be resolved into components I, and I, for each oscillator.
Equations (9) and(10) can then be numerically integrated
for A(t) and ¢(t), leading to a time-domain solution of the
system.

It is evident that the behavior of such a system depends
critically on the characterization of the oscillators in terms
of negative conductance —Gp(A) and susceptance Bp(4).
Although in principle these functions can be obtained from
a nonlinear circuit analysis program such as SPICE, it is
probable that more reliable data is obtained from direct
load—pull measurements. In these measurements, an exter-
nal variable admittance Ye; is connected to the injection

160

node of an actual oscillator. Frequency and power varia-
tions resuling from Y,,; variations are translated into the
functions —Gp(A) and Bp(A). In many cases, the varia-
tion of device susceptance Bp(4) can be neglected, and this
was done in the results to be presented, although improved
accuracy can be obtained by including Bp(A4).

A computer program was written to predict the be-
havior of three identical oscillators (Fig. 1) embedded in
the linear circuit of Fig. 2. The oscillator characteristics
L, C, and Gp(A) were obtained from load—pull measure-
ments and are described below. With no injection current,
it was found that for virtually any set of realistic initial con-
ditions, the oscillator phases gravitated toward each other
by virtue of the currents through coupling conductances
Gc. When in—-phase injection currents were introduced,
the three—oscillator system sychronized to the injection fre-
quency much as a single oscillator would.

A most interesting phenomenon occurred when the
phase of one injection signal was shifted with respect to
the other (¢35 # o). As shown in Fig. 3, the phases of
the oscillators spread out in equally-spaced intervals pro-
portional to the injection phase difference 9z — tg. The
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Fig. 2. Three canonical oscillators of Fig.
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Experimental VHF oscillator.
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predicted oscillator phases are linear with respect to the in-
jection phase difference to within +4%, and the predicted
amplitude variations are relatively minor. This linear phase
progression from one source to the next is precisely the be-
havior required to drive a steerable linear phased antenna
array, and in the simulation the control of all three oscil-
lator phases was achieved by controlling the phase of only
one injection power source.

Experiments

A three—oscillator system was designed to emulate the
computer simulation at 220.3 MHz. Each oscillator used
a VHF JFET in the circuit of Fig. 4. Load-pull exper-
iments led to a functional dependence of -Gp(4) shown
in Fig. 5, and modeled by the mathematical single-valued
interpolation shown by the dashed line. Due to a slight
dependence of Gp on frequency, the experimental curve is
a narrow closed loop rather than a single-valued line, but
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this slight dependence was neglected. A value of C = 212pf
was determined for the equivalent capacitance of the Fig. 1
circuit, and an equivalent inductance L = 2.46nH resonates
the tank circuit at 220.3 MHz.

Since the actual oscillators are housed in separate
shielded enclosures, it was not possible to use a simple re-
sistor to interconnect injection nodes. Instead, coupling
capacitances were included in coupling circuits shown in
Fig. 6(A), which were designed to have the same mutual Y-
parameter as the desired coupling conductance G¢. (Shunt
admittances can be absorbed in the oscillator equivalent cir-
cuits.) Unfortunately, the design neglected certain stray re-
actances and resulted in an equivalent coupling admittance
closer to Y, = 1.55 — 70.42mS. Additionally, the simula-
tion’s injection current value of 5.51 mA was found to be
outside the range of applicability of the oscillator model.
Accordingly, a new computer simulation was run with the
experimentally measured complex value of Yo and smaller
injection currents of 1.74 mA. The predicted phase behav-
ior of this system is shown in Fig. 7. The undesirable
curvature of the phase lines is caused by the reactive part
of the coupling admittance.
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In the test setup of Fig. 6, the injection phases g
and 13 were equalized by means of the stretch-line phase
shifter. The oscillator tuning adjustments were set so as
to equalize the oscillator phases to £10° or so. Then, the
injection phase difference 13 — 19 was increased and the
oscillator phases were measured as shown in Fig. 8. Agree-
ment with the theoretical prediction of Fig. 7 is reasonably
good, and can no doubt be improved with more detailed
models of the oscillators.
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Applications

The applications of inter-injection—locked arrays fall
into two categories: (a) All-in-phase applications, in which
no phase control other than keeping the oscillators in phase
with each other is required, and (b) Phased array appli-
cations, for which a linear progression of phase shift per
oscillator is controlled by a single external phase shifter.

The number of inter-injection—locked oscillators that
can be used in a given situation depends upon each oscilla-
tor’s frequency accuracy and external Q. External Q [4] is a
measure of how easily an oscillator is pulled by a given level
of injection power. An ideal oscillator for use in an inter—
.injection—locked array would have a free-running frequency
exactly equal to the injection frequency, and a low value of
external Q so that its phase may easily be controlled by a
small amount of injection power. Real oscillators do not
meet these ideal specifications, but computer simulations
using statistical distributions of frequency errors indicate
that systems using four to eight oscillators should be feasi-
ble without post—production tuning.

Fig. 9 shows a phased antenna array which could be
uged for either in—phase spatial power combining or steer-
able phased-array applications. Beneath each patch an-
tenna is an active device which uses the patch as a reso-
nant element. Coupling between patches can be adjusted
to provide the desired inter-injection-locking behavior, and
radiation from each antenna into free space combines at a
distant point without losses. Much effort is required for
the characterizaton of self and mutual impedances of such
a system, but progress in this area is being made [5]. This
basic principle is applicable from microwave frequencies on
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through the millimeter-wave range [6], where the very lim-
ited power available from an individual device makes low—
loss power combining a desirable option.

Conclusions
The principle of inter—injection-locked oscillators has
been analyzed and experimentally verified in a three-
oscillator system. Although close frequency tolerances may
be necessary for large systems, the concept should be appli-
cable to many planar and monolithic circuits in which the

total power requirement exceeds that available from one
device.
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